Award Number: W81XWH-11-1-0755 TITLE: Adaptive Computer-Assisted Mammography Training for Improved Breast Cancer Screening PRINCIPAL INVESTIGATOR:

نویسنده

  • Maciej Mazurowski
چکیده

Introduction While mammography notably contributes to earlier detection of breast cancer, it has its limitations including a large number of false positive exams. Improved radiology education could potentially contribute to alleviating this issue. Toward this goal, in this paper we propose an algorithm for modeling of false positive error making among radiology trainees. Identifying troublesome locations for the trainees could focus their training and in turn improve their performance. Methods The algorithm proposed in this paper predicts locations that are likely to result in a false positive error for each trainee based on the previous annotations made by the trainee. The algorithm consists of three steps. First, the suspicious false positive locations are identified in mammograms by Difference of Gaussian filter and suspicious regions are segmented by computer vision-based segmentation algorithms. Second, 133 features are extracted for each suspicious region to describe its distinctive characteristics. Third, a random forest classifier is applied to predict the likelihood of the trainee making a false positive error using the extracted features. The random forest classifier is trained using previous annotations made by the trainee. We evaluated the algorithm using data from a reader study in which 3 experts and 10 trainees interpreted 100 mammographic cases. Results The algorithm was able to identify locations where the trainee will commit a false positive error with accuracy higher than an algorithm that selects such locations randomly. Specifically, our algorithm found false positive locations with 40% accuracy when only 1 location was selected for all cases for each trainee and 12% accuracy when 10 locations were selected. The accuracies for randomly identified locations were both 0% for these two scenarios. Conclusions In this first study on the topic, we were able to build computer models that were able to find locations for which a trainee will make a false positive error in images that were not previously seen by the trainee. Presenting the trainees with such locations rather than randomly selected ones may improve their educational outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015